
En ocasiones, la inteligencia artificial queda definida por las muestras más futuristas. Así, los coches autónomos, de los que están previstos varios modelos para 2020, los drones, las smart cities o la robótica en general son lo que más llaman la atención, pero esto no quiere decir que en la actualidad sean lo más relevante. “Ahora mismo estamos muy centrados en reconocer patrones, reconocer objetos o el habla, y el reto es no sólo diferenciarlos sino comprenderlos. No sólo reconocer el lenguaje, sino comprender la semántica del lenguaje”, destaca Alberto García.
El reconocimiento de patrones está relacionado con el campo del data mining (o minería de datos), que trata deextraer información útil de toda una masa desestructurada de datos. Twitter es un buen ejemplo de cómo ingentes cantidades de información sin hilo conductor aparente pueden servir para prever tendencias de consumo y otros comportamientos, incluso para detectar epidemias y proyectar su expansión. “Es como si un ser humano tuviera una capacidad de procesamiento brutal y acceso a una cantidad de información brutal”, resume así Alberto García los dos pilares básicos que dan pie a este proceso.
Sin embargo, aun con la gran capacidad de procesamiento que han alcanzado las máquinas y toda la información que está disponible, las limitaciones se dejan notar. En un experimento que hizo Google, pusieron una red neuronal de 16.000 procesadores a ver vídeos de YouTube. Su misión era identificar gatos. Lograron prácticamente duplicar el porcentaje de aciertos obtenido hasta el momento, a pesar de lo cual sólo reconocieron a los mininos un 16% de las veces. El objetivo de la inteligencia artificial en este terreno –aún por alcanzar y precisar– no es sólo que una máquina sea capaz de reconocer un gato o cualquier otra forma en una escena de una película, sino que pueda comprender la escena y darle un significado completo.
Normalmente se trabaja a un nivel más bajo y precisamente a este nivel la inteligencia artificial está presente en muchos ámbitos de la cotidianidad. El reconocimiento de patrones está por todas partes. Los bancos, por ejemplo, lo utilizan continuamente para comprobar si una transacción es correcta o fraudulenta, sirviéndose de un software que usa toda la información acumulada sobre fraudes y movimientos correctos. De hecho, estos sistemas puede predecir cómo serán los casos futuros, es decir, los algoritmos tienen la capacidad de generalizar. El profesor de Inteligencia Artificial de la Escuela Politécnica Superior (EPS) de la UAM Manuel Sánchez-Montañés equipara esta cualidad al aprendizaje. “Las máquinas hoy en día pueden aprender en ese sentido: amoldarse a problemas, desarrollar la capacidad de extraer patrones o predecir casos nuevos”.



HERRAMIENTAS